1,871 research outputs found

    Effect of the mineralizer solution in the hydrothermal synthesis of gadolinium-doped (10% mol Gd) ceria nanopowders

    Get PDF
    Background: Gadolinium-doped ceria is an attractive electrolyte material for potential application in solid oxide fuel cells (SOFCs) operating at intermediate temperatures typically with 10%-20% substitution of Ce+4 by Gd+3. In particular, 10% gadolinium-doped ceria seems to have the highest values of conductivities among the other dopant compositions. Methods: Nanosized powders of gadolinium-doped ceria were prepared by hydrothermal treatment using coprecipitate as a precursor and in the presence of 3 different mineralizer solutions. The powders obtained were characterized by X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy and thermal analysis, while the electrical behavior of the corresponding pellets were ascertained by AC impedance spectroscopy. Results: Nanocrystalline gadolinium-doped ceria powders with fluorite cubic crystal structure were obtained by hydrothermal treatment. Independent of the mineralizer used, these powders were able to produce very dense ceramics, especially when selecting an optimized sintering cycle. In contrast, the electrical behavior of the samples was influenced by the mineralizer solution, and the samples synthesized in the neutral and alkaline solutions showed higher values of electrical conductivity, in the range of temperatures of interest. Conclusions: By the coprecipitation method, it has been possible to synthesize nanosized gadolinium-doped cerium oxide in a fluorite structure, stable in a wide range of temperatures. Hydrothermal treatment directly on the as-synthesized coprecipitates, without any drying step, had a very positive effect on the powders, which can be sintered with a high degree of densification, especially with an optimized sintering cycle. Furthermore, the electrical behavior of these samples was very interesting, especially for the samples synthesized using neutral mineralizer solution and basic mineralizer solution

    Rare Earths and the Balance Problem: How to Deal with Changing Markets?

    Get PDF
    The balance between the market demand and the natural abundance of the rare-earth elements (REEs) in ores, often referred to as the Balance Problem (or the Balancing Problem), is a major issue for REE suppliers. The ideal situation is a perfect match between the market demand for and the production of REEs, so that there are no surpluses of any of the REEs. This means that the rare-earth industry must find new uses for REEs that are available in excess and search for substitutes for REEs that have either limited availability or are high in demand. We present an overview of the trends in the applications for the different REEs and show that the demand for REEs for use in magnets, catalysts, and alloys is still increasing, while the application of REEs in polishing agents, glass, and ceramics are stable. On the other hand, the use of REEs in nickel–metal-hydride (NiMH) batteries and lamp phosphors is decreasing. These changes in the REE market have an influence on the Balance Problem, because the REEs that can be recycled from fluorescent lamps, cathode-ray tubes (CRTs), and NiMH batteries have to be at least partly reused in other applications. Magnesium and aluminum alloys offer an opportunity to mitigate the Balance Problem caused by these changes in the REE market. This is illustrated for REEs that can be recycled from fluorescent-lamp phosphor waste, CRT phosphors, and NiMH batteries. At present, five REEs (Nd, Eu, Tb, Dy, and Y) are being considered as very critical by Europe, the United States, and Japan, but we forecast that in the medium term, only neodymium will remain a critical REE. This paper discusses the relationship between criticality and the Balance Problem and shows how this relationship influences the market for specific REEs.This work has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 680629 (REMAGHIC: New Recovery Processes to produce Rare Earth-Magnesium Alloys of High Performance and Low Cost) (project website: http://www.remaghic-project. eu). KB and PTJ acknowledge funding from the European Community’s Seventh Framework Programme ([FP7/2007–2013]) under Grant Agreement No. 607411 (MC-ITN EREAN: European Rare Earth Magnet Recycling Network) (project website of EREAN: http:// www.erean.eu). Paul McGuiness (Sciencewriter.si, Slovenia) is acknowledged for the drawing of the figures

    Investigating the impact and reaction pathway of toluene on a SOFC running on syngas

    Get PDF
    The integration of solid oxide fuel cells (SOFCs) with gasification systems have theoretically been shown to have a great potential to provide highly efficient distributed generation energy systems that can be fuelled by biomass including municipal solid waste. The syngas produced from the gasification of carbonaceous material is rich in hydrogen, carbon monoxide and methane that can fuel SOFCs. However, other constituents such as tar can cause catalyst deactivation, and blockage of the diffusion pathways. This work examines the impact of increasing concentrations of toluene as a model tar in a typical syngas composition fed to a NiO-GDC/TZ3Y/8YSZ/LSM-LSM SOFC membrane electrode assembly operating at 850°C and atmospheric pressure. Results suggest that up to 20 g/Nm3 of toluene and a low fuel utilisation factor (c.a. 17%) does not negatively impact cell performance and rather acts to increase the available hydrogen by undergoing reformation. At these conditions carbon deposition does occur, detected through EDS analysis, but serves to decrease the ASR rather than degrade the cell. Alternatively, the cell operating with 32 g/Nm3 toluene and with a fuel utilisation of 66.7% is dramatically affected through increased ASR which is assumed to be caused by increased carbon deposition. In order to test for the presence of tar products at the anode exhaust samples have been captured using an absorbing filter with results from HS-GC/MS analysis showing the presence of toluene only. © 2014 Hydrogen Energy Publications, LLC

    Electrical and microstructural characterization of ceramic gadolinium-doped ceria electrolytes for ITSOFCs by sol-gel route

    Get PDF
    Background: Gadolinium-doped ceria (GDC) is a promising alternative as a solid electrolyte for intermediate temperature solid oxide fuel cells (ITSOFCs) due to its low operating temperature and its high electrical conductivity. The traditional synthesis processes require extended time for powder preparation. Sol-gel methodology for electrolyte fabrication is more versatile and efficient. Methods: In this work, nanocrystalline ceria powders, with 10 and 20 mol% of gadolinium (Ce0.9Gd0.1O1.95 and Ce0.8Gd0.2O1.9) were synthesized by a modified sol-gel technique, featuring a nitrate-fuel exothermic reaction. GDC tablets were prepared from powders and sintered at 1500°C with a dwell time of 3 hours. The sintered pellets' microstructure (by SEM) and electrical conductivity (by EIS) were evaluated. The powder properties, such as crystalline structure (by XRD), thermal properties (TGA/DTA), particle size and morphology (TEM) and textural properties (BET method) were determined and, in addition, for the first time an accurate chemical structural evolution (FTIR) was studied. Results: Sintered GDC0.8 samples exhibited the maximum theoretical density of 97% and an average grain size of 700 nm. The electrical conductivity vs. temperature showed values ranging from 1.9∙10-2 to 5.5∙10-2 S·cm-1 at 600°C and 800°C for GDC with 20 mol% of gadolinium. Conclusions: The methodology investigated showed reduced reaction time, a better control of stoichiometry and low cost. Characterization results demonstrated that these materials can be applied in ITSOFCs due to high conductivity, even at 550°C-600°C. The increased conductivity is related to the improved mobility of gadolinium ions in a high-density structure, with nanometric grains

    Silica-scavenging effects in ceria-based electrolytes

    Get PDF
    Mestrado em Ciência e Engenharia de MateriaisGadolinium-doped ceria based powders were co-fired with additions of silica, and silica and lanthanum oxide, to test the silicascavenging role of lanthanum. The formation of one ionic conducting secondary phase, instead of an insulating phase, was attempted. The structural, microstructural and electrical characterization of these samples confirmed the formation of one apatite-type lanthanum silicate-based phase and a significant enhancement of the grain boundary conductivity of these materials. ABSTRACT: Pós de céria dopada com gadolínio foram sinterizados com adições de sílica, e de sílica e óxido de lantânio, para testar o efeito de remoção de sílica do óxido de lantânio. Com esta abordagem explorou-se a formação de uma fase secundária condutora iónica em vez de uma fase isoladora. A caracterização estrutural, microestrutural e eléctrica das amostras confirmou a formação de uma fase tipo apatite derivada do silicato de lantânio e uma melhoria significativa da condutividade da fronteira de grão destes materiais

    Gadolinium-vacancy clusters in the (111) surface of gadolinium-doped ceria: a density functional theory study

    Get PDF
    Solid-oxide fuel cells are promising devices for sustainable power generation. Electrolyte materials play an important role in connecting the anode and cathode, and they influence the performance of the device. In this context, gadolinium-doped ceria (GDC) has proven to be an efficient electrolyte material, although the presence of dopant clusters can lower its efficiency. After usage, dopant clusters start appearing at dislocations, translocations, grain boundaries, or surfaces. Hence, the study of dopant clustering at the atomic level near these regions becomes of vital importance, as it allows us to understand the reasons for the occurrence of this phenomenon and its impact on the oxygen conduction. In this context, the present paper studies the impact of dopant clustering near the (111) GDC surface. We have studied two different gadolinium concentrations in the material, of approximately 7% and 14%, which are close to the optimum concentration of 10%. Our results indicate that surface relaxation is a key factor in determining the preference of defect clusters to be found in the surface. We have also calculated the relative abundance of different defect clusters at different temperatures, including the configurational entropy term. It was revealed that working temperatures (650–1100 K) show the relative abundance of different cluster structures, displaying that, at high concentrations, preferred dopant clusters resemble the structure of Gd2O3, showing the formation of gadolinia domains. Finally, we show that oxygen diffusion will be affected by the formation of these domains. After evaluating the oxygen mobility, we conclude that oxygen vacancies will be trapped by the gadolinium clusters at the surface. These vacancy traps prevent oxygen diffusion, thereby affecting negatively the performance of the material and the fuel cell in general

    Sulfur-tolerant natural gas reforming for fuel-cell applications

    Get PDF
    An attractive simplification of PEM-FC systems operated with natural gas would be the use of a sulfur tolerant reforming catalyst, but such a catalyst has not been available thus far. In this work it is demonstrated that a tailor made rhodium catalyst retains useful activity for typical sulfur levels in the feed. A brief economic comparison showed however that this alternative process is still less economical than the traditional process employing removal of sulfur components by adsorption

    Integrated Natural Gas Powered SOFC Systems

    Get PDF
    The present invention discloses an integrated SOFC system powered by natural gas. Specifically, a SOFC-O cell is combined with a SOFC-H cell so as to take advantage of the high operating temperature and steam reforming capabilities of the SOFC-O cell as well as the higher fuel conversion efficiency of the SOFC-H cell.Philips 66 CompanyGeorgia Tech Research Corporatio
    corecore